Domination and location in twin-free digraphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twin minus domination in directed graphs

Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...

متن کامل

Twin signed total Roman domatic numbers in digraphs

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...

متن کامل

Efficient total domination in digraphs

We generalize the concept of efficient total domination from graphs to digraphs. An efficiently total dominating set X of a digraph D is a vertex subset such that every vertex of D has exactly one predecessor in X . We study graphs that permit an orientation having such a set and give complexity results and characterizations concerning this question. Furthermore, we study the computational comp...

متن کامل

Efficient open domination in digraphs

Let G be a digraph. A set S ⊆ V (G) is called an efficient total dominating set if the set of open out-neighborhoods N−(v) ∈ S is a partition of V (G). We say that G is efficiently open-dominated if both G and its reverse digraph G− have an efficient total dominating set. Some properties of efficiently open dominated digraphs are presented. Special attention is given to tournaments and directed...

متن کامل

Inverse Domination and Inverse Total Domination in Digraphs

I. Introduction In this paper, D=(V, A) is a finite, directed graph with neither loops nor multiple arcs (but pairs of opposite arcs are allowed) and G=(V, E) is a finite, undirected graph with neither loops nor multiple edges. For basic terminology, we refer to Chartrand and Lesniak [2]. A set S of vertices in a graph G=(V, E) is a dominating set if every vertex in V – S is adjacent to some ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2020

ISSN: 0166-218X

DOI: 10.1016/j.dam.2020.03.025